Tuesday, August 4, 2015

Valence-Shell Electron Pair Repulsion(VSEPR) Theory

            In 1940,Sidgwick and Powell first the theory of valence-shell electron pair repulsion theory and was developed by Gillespie and Nyholm later in 1957.They explain the molecular shape and bond angle more exactly.According to them,geometry of a molecule depends on the number of bonding and non bonding electron pair in a central atom so as to maintain the minimum repulsion between them.These electron pair arrange themself in one orientation of orbitals corresponding to minimum energy and attain a definite shape.
                                       The idea of correlatin between the molecular geometry and the number of valence electrons (both shared and unshared) was originally proposed in 1939 by Ryutaro Tsuchida in Japan, and was independently presented in a Bakerain Lecturein 1940 Nevil Sidgwick and Herbert Powell of the University of oxford In 1957, Ronald Gillespie and Ronald Sydney Nyhlom of University college of London refined this concept into a more detailed theory, capable of choosing between various alternative geometries.
              Rule;
    

  • IF the central atom of the molecule is surrounded by only bonding electron pair and not by non bonding electron pair, the geometry of the molecule will be regular as predicted by hybridization.
  • When the central atom in a molecule is surrounded by both bond and lone pair, the molecule doesnt have regular shape.
  • Presence of lone pair on the central atom cause slight distortion of the bond angle from the ideal shape. The extent of repulsion between different electron pair is in the order of;                            l.p-l.p repulsion> l.p-b.p repulsion>b.p-b.p repulsion
  • The magnitude of a repulsion between bonding pairs of electrons depends  on the electronegativity difference between the central atom and other atoms.
  • Double bond cause more repulsion than single bond and triple bond cause more repulsion than double bond.                                                                                                                                                                     

Molecule TypeShape[12]Electron arrangement[12]Geometry[12]Examples
AX2E0LinearAX2E0-3D-balls.pngLinear-3D-balls.pngBeCl2,[1] HgCl2,[1] CO2[11]
AX2E1BentAX2E1-3D-balls.pngBent-3D-balls.pngNO
2
,[1] SO2,[12] O3,[1] CCl2
AX2E2BentAX2E2-3D-balls.pngBent-3D-balls.pngH2O,[12] OF2[17]
AX2E3LinearAX2E3-3D-balls.pngLinear-3D-balls.pngXeF2,[12] I
3
,[18] XeCl2
AX3E0Trigonal planarAX3E0-3D-balls.pngTrigonal-3D-balls.pngBF3,[12] CO2−
3
,[19] NO
3
,[1] SO3[11]
AX3E1Trigonal pyramidalAX3E1-3D-balls.pngPyramidal-3D-balls.pngNH3,[12] PCl3[20]
AX3E2T-shapedAX3E2-3D-balls.pngT-shaped-3D-balls.pngClF3,[12] BrF3[21]
AX4E0TetrahedralAX4E0-3D-balls.pngTetrahedral-3D-balls.pngCH4,[12] PO3−
4
SO2−
4
,[11] ClO
4
,[1] XeO4[22]
AX4E1Seesaw (also called disphenoidal)AX4E1-3D-balls.pngSeesaw-3D-balls.pngSF4[12][23]
AX4E2Square planarAX4E2-3D-balls.pngSquare-planar-3D-balls.pngXeF4[12]
AX5E0Trigonal bipyramidalTrigonal-bipyramidal-3D-balls.pngTrigonal-bipyramidal-3D-balls.pngPCl5[12]
AX5E1Square pyramidalAX5E1-3D-balls.pngSquare-pyramidal-3D-balls.pngClF5,[21] BrF5,[12] XeOF4[11]
AX5E2Pentagonal planarAX5E2-3D-balls.pngPentagonal-planar-3D-balls.pngXeF
5
[14]
AX6E0OctahedralAX6E0-3D-balls.pngOctahedral-3D-balls.pngSF6,[12] WCl6[24]
AX6E1Pentagonal pyramidalAX6E1-3D-balls.pngPentagonal-pyramidal-3D-balls.pngXeOF
5
,[13] IOF2−
5
[13]
AX7E0Pentagonal bipyramidal[11]AX7E0-3D-balls.pngPentagonal-bipyramidal-3D-balls.pngIF7[11]
AX8E0Square antiprismatic[11]AX8E0-3D-balls.pngSquare-antiprismatic-3D-balls.pngIF
8
ZrF4−
8
ReF
8
AX9E0Tricapped trigonal prismatic (as drawn)
OR capped square antiprismatic
AX9E0-3D-balls.pngAX9E0-3D-balls.pngReH2−
9
[15]




    
  •       Reference:
  • Dasu Paudel
  • Wikipedia
  • Advance Inorganic Chemistry                                                                                                               

No comments:

Post a Comment